

MODÉLISATION GÉOMÉTRIQUE DE SCÈNES URBAINES AVEC LE FORMALISME LOD2 À PARTIR D'IMAGES SATELLITES

Directeur de thèse : Florent Lafarge (INRIA) Responsable CNES : David Youssefi

> MARION BOYER 26/11/2024

CONTEXTE/OBJECTIF

- → Demande croissante de modèles 3D (simulation, urbanisme...)
- \rightarrow Satellite : meilleure couverture, fréquence et coût
- Objectif : reconstruction en niveau de détail LoD2

CONTEXTE

DONNÉES

Images Pléiades Neo

Résolution : 30 cm 1 bande panchromatique 6 bandes multispectrales Paris

Informations sémantiques

Bâtiments Bords de bâtiments Informations 3D

AIRBUS

Liberté Égalité

Fraternité

cnes

Pattern Recognition (pp. 8633-8641).

[2] Boyer, M., Youssefi, D., & Lafarge, F. (2024). LineFit: A Geometric Approach for Fitting Line Segments in Images. In European Conference on Computer Vision (ECCV) [3] Youssefi, D., Michel, J., Sarrazin, E., Buffe, F., Cournet, M., Delvit, J. M., ... & Bosman, J. (2020). Cars: A photogrammetry pipeline using dask graphs to construct a global 3d model. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 453-456). IEEE.

FORMULATION DU PROBLÈME

 \rightarrow Détecter des segments de droites dans les images

- Structures linéaires
- Formes courbes

Ours (LineFit)

→ Problème d'optimisation : on veut trouver la meilleure configuration de lignes par rapport aux données utilisées

NUAGE DE POINTS 2D

→ Ensemble des points dont les coordonnées sont les centres des pixels d'intérêt.

DÉTECTION DE LIGNES

ASSOCIATION POINTS/LIGNES

- Association des points à une ligne
 - Inlier si associé
 - Outlier sinon
- Critères d'association :
 - Distance maximum à la ligne de $oldsymbol{arepsilon}$
 - Nombre minimum d'inliers σ pour une ligne

Nuage de points 2D

ASSOCIATION POINTS/LIGNES

• ε contrôle le niveau d'approximation des formes courbes

• La paire (ε, σ) définie le niveau de détail de la détection de lignes

OBJECTIFS

Qu'est ce qu'une bonne configuration ?

- Fidélité : minimiser la distance entre les inliers et les droites
- Complétude : maximiser nombre d'inliers total
- Régularité : minimiser le nombre de segments et encourager le parallélisme, l'orthogonalité et la colinéarité des segments

APPROCHE ÉNERGÉTIQUE

• Mesure de la qualité de la configuration X = (s, l) avec l'énergie U:

Avec *s* : variable continue, équations des droites

l : variable discrète, labels inlier/outlier

OPTIMISATION

- Départ : configuration initiale
- Mécanisme d'exploration : on applique itérativement l'opérateur géométrique qui décroit le plus l'énergie.
 - Opérateurs locaux : modifie un ou deux segments
 - Opérateurs globaux : toute la configuration peut être modifiée

RÉSULTATS

• Mesures utilisées :

Précision (AP) Proportion de bonnes détections parmi toutes détections

Datasets :

Liberté Égalité

RÉPUBLIQUE FRANÇAISE

cnes

Structures linéaires

lnría_

AIRBUS

RoofSat

Recall (AR)

Proportion de bonnes détections

par rapport à la vérité terrain

• 550 images, 550x550

YorkUrban [1], [2]

- 11 images PléiadesNeo, 30cm de résolution
- 5650 bâtiments individuels, 148 blocs de bâtiments

F-score (AF) Moyenne (harmonique) entre Precision et Recall

Degré de liberté (DoF) Nombre de degré de liberté dans la configuration

Formes courbes

BSDS500 [3]

Denis, P., Elder, J. H., & Estrada, F. J. (2008). Efficient edge-based methods for estimating manhattan frames in urban imagery. In Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part II 10 (pp. 197-210). Springer Berlin Heidelberg.
Cho, N. G., Yuille, A., & Lee, S. W. (2017). A novel linelet-based representation for line segment detection. IEEE transactions on pattern analysis and machine intelligence, 40(5), 1195-1208.

[3] Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2010). Contour detection and hierarchical image segmentation. IEEE transactions on pattern analysis and machine intelligence, 33(5), 898-916.

12

RÉSULTATS

• Structure linéraires

	YorkUrban							
	ELSED	HAWP	LETR	DeepLSD	Ours	Ours*		
AP(个)	48,2	39,2	41,3	51,0	52,0	<u>51,3</u>		
AR(个)	39,8	17,6	<u>40,4</u>	40,2	41,5	40,2		
AF (个)	42,7	23,5	39,7	<u>44,6</u>	45,7	44,5		
DoF(↓)	82,8	90,5	83 <i>,</i> 9	<u>79,9</u>	81,1	47,1		
#lines	374	227	357	354	388	414		

	RoofSat							
	ELSED	HAWP	LETR	DeepLSD	Ours	Ours*		
AP(个)	39,1	<u>45,4</u>	21,3	48,9	42,1	41,8		
AR(个)	<u>38,2</u>	31,2	30,0	34,4	39,0	36,8		
AF (个)	35,2	35,4	18,2	36,3	37,9	<u>36,4</u>		
DoF(↓)	<u>95,6</u>	96,8	96,1	96,6	96,2	57,8		
#lines	282	227	228	196	297	288		

*Avec régularisation

- Meilleur Recall grâce au critère de complétude
- Bonne précision
- F-score compétitif
- Régularité réduit nombre de degré de liberté mais dégrade légèrement le Recall et la Précision

RÉSULTATS

1

Liberté Égalité Fraternité

RÉPUBLIQUE FRANÇAISE

cnes

• Formes courbes

lnría_

AIRBUS

- Pas de régularité
- Meilleurs résultats pour chaque métrique
- Grande variation du nombre de segment grâce aux critère de fitting (ε,σ)

DÉTECTION DE LIGNES

APPLICATION DE LINEFIT

Détection de lignes

Partition

CRÉATION DU WIREFRAME

 \rightarrow Associer un plan à chaque face de la partition

→ Utiliser des opérateurs pour modifier la partition

lnría_

AIRBUS

1

Liberté Égalité Fraternite

RÉPUBLIQUE FRANÇAISE

cnes

→ Utiliser les informations de la carte de segmentation de toits et du DSM pour être fidèle aux deux

Segmentation de toits

DÉTECTION DE LIGNES

PIPELINE GÉNÉRAL

AIRBUS

Liberté Égalité Fraternité

cnes

[1] Li, M., Lafarge, F., & Marlet, R. (2020). Approximating shapes in images with low-complexity polygons. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8633-8641).

[2] Boyer, M., Youssefi, D., & Lafarge, F. (2024). LineFit: A Geometric Approach for Fitting Line Segments in Images. In European Conference on Computer Vision (ECCV).

RÉSULTATS PRÉLIMINAIRES LOD2

CONCLUSION

CONCLUSION

- Détection de lignes
 - LineFit : optimisation d'énergie et mécanisme d'exploration
 - RoofSat : dataset de lignes par images satellite
 - Article ECCV2024
- Wireframe
 - Fidélité au DSM et à la segmentation de toits
 - Raffiner les partition en utilisant des opérateurs de regroupement/séparation

RoofSat dataset

