Données, Algorithmes et Applications 3d

Towards large scale forest inventory

Scaling up precision using 3D data

Alvin Opler - 18/03/2025

Introduction: Why use 3d data in forestry?

Wide availability of open-data

Cf all european data open-access

Enables tasks previously hard:

Segmentation Biomass estimation Species Calibration of space-based models etc.

https://hub.flai.ai/

Calders et al. 2024

Introduction: Why use 3d data in forestry?

ALS-like data

Step 1: Top of canopy detection

Step 2: Tree extraction

TLS-like data

Step 1: Trunk detection

Initial trunk detection based on DBSCAN
Step 2: Tree extraction

Introduction: Why use 3d data in forestry ? ALS-like data TLS-like data

Using full 3d data

All supervised learning...

Introduction: Why use 3d data in forestry?

... but with which dataset ?

Veitch-Michaelis et al. 2024

From the largest dataset of tree crowns (280k):

"Since we do not have ground truth for the data, there is some inherent subjectivity in the labels [...] we advise that they be used for open canopy tree mapping only. [...] We make it quite explicit that our model does not delineate dense groups of trees that are touching (closed canopy). [...] you should not use our models for things like tree counting in closed canopy forest."

Our work: Overview for a self-supervised individual tree segmentation method

Step 1: Create (a) good 3d tree prototype(s) Dataset and method Downstream tasks Comparison with other methods

Step 2: Fit the prototype(s) on the Lidar (work in progress) Method only

I. The prototypes: Dataset

7

I. The prototypes: Method (Model)

What we do...

- K=1 (one prototype)
- D=5 (5 types of deformations)
- Train one model for all species (for now)
- Additional transfo: Anisoscaling, rot Euler 2d
- N_proto = 2000

What we minimise...

$$\mathcal{L}(\mathcal{R}) = \sum_{x \in x_1, \dots, x_N} \min_{k=1}^K d\left(x, \mathcal{R}^k(x)\right)$$

Loiseau et al. 2021

How we do...

$$\mathcal{R}^k(x) = c^k + \sum_{i=1}^D a_i \, v_i^k$$

I. The prototypes: Reconstruction

I. a) Downstream task: Volume estimation The contenders of our method

Tree QSM

Model 1 (*m*1): $V = A_0 D^{a_1}$

Model 2 (m2): $V = B_0 D^{b_1} H^{b_2}$

Allometric equations

Model 3 (m3): $V = C_0 D^{c_1} H^{c_2} C A^{c_3}$.

Deep regressor

Pros: Very good precision **Cons:** Slow (2 m 30s per cloud), need consequent storage **Pros:** Easy, can have a biomass value from CA and H only **Cons:** Underestimation of big trees, not so reliable...

Pros: Good precision **Cons:** In the next slide...

I. a) Downstream task: Volume estimation Comparison

Exp name	ForSpecies20k	Volume data (Calders)
Ours (transfer)	100%	x%
Ours (no transfer)	NA	x%
Deep regressor	NA	x%
Allometries (H,D,CA)	NA	x%
Allometries (H,CA)	NA	x%

I. b) Downstream task: Species prediction methods

Ours (modified)

Classifier

I. b) Downstream task: Species prediction Comparison

Method	Ours (D=5)	Classifier
OA	0.67	0.7
Best class F1	0.86	0.79

D M D

-25 0 25 50 75 100 t-SNE_1

Loiseau et al 2024

Conclusion

We developed an new alternative to QSMs

Can be applied on large scale (low storage, low latency) Keep gross **structure of tree**

Can be used to extract a estimation of the tree specie We are developing a large scale use of these prototypes So we can extract single tree from point cloud **in an unsupervised way** While keeping essential individual tree info LAI, Specie, Biomass, etc.

Thank you !!

